Portal field news

Portal field news

in ,

📱 | Google announces new smartphone "Pixel 6/6 Pro" this fall.Original SoC "Tensor" adopted


写真 

Google announces new smartphone "Pixel 6/6 Pro" this fall.Original SoC "Tensor" adopted

 
If you write the contents roughly
At Tensor, we also pay attention to the performance of AI and machine learning.
 

Google announced that it will announce new smartphones "Pixel 6" and "Pixel 6 Pro" this fall ... → Continue reading

 PHILE WEB

It is a site "PHILE WEB" (file web) that delivers daily news, reviews, bargain information, etc. on AV / audio / gadgets. First published in 1999.


Wikipedia related words

If there is no explanation, there is no corresponding item on Wikipedia.

Machine learning

Machine learning(Kikaigakushu,British: Machine Learning) Is a computer algorithm or its research area that automatically improves by learning from experience.[1][2],Artificial intelligenceIs considered to be a type of. Learning is done using data called "training data" or "learning data", and some tasks are performed using the learning results.For example, in the pastSpam mailIt is possible to learn by using as training data and perform the task of spam filtering.

Machine learning is closely related to the following areas:

The name machine learning was named in 1959Arthur SamuelCoined by[5].

Overview

Definition

The following concise definition by Tom M. Mitchell is widely cited, although the definition varies from one author to another:

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E[6].
Computer program from experience E with respect to task class T and performance indicator PLearningThen, it means that the performance measured by P of the task in T is improved by experience E. — (English edition

heretaskIs a problem to be solved by the program. For example, in the case of a sales forecasting task, it is a task such as "forecast tomorrow's sales".

経 験Is given to the program as some data.This dataTraining dataOrTraining dataIn the case of a sales forecasting task, for example, sales up to today, which is "past experience", are given as training data.The process of improving the performance of a program using training data, "ProgramTraining"Do" or "ProgramLearningLet me do it. "Also, a set of all data used to train a program (training or learning)data set(Data setTomo).

FinallyPerformanceIs an index for measuring how much performance the program has achieved the task, and in the case of the above-mentioned sales forecasting task, for example, an error from the actual sales can be used as the performance index.

Variable type

In machine learning, dataxWhen is a continuous quantityxTheQuantitative variables(quantitative variable), A variable that represents the type of thing, such as a classification category such as "dog" or "cat".Qualitative variables(qualitative variable)[7][8]..Qualitative variablesCategorical variable(categorical variable),factor(factorAlso called)[8].

In addition to quantitative and qualitative variables, it takes discrete values ​​ordered as "large", "medium", and "small".Ordered categorical variable(ordered categorical variable)[8]. AlsoNatural languageUnlike qualitative variables, machine learning handles things that are not continuous quantities and do not take values ​​in a finite number of categories, unlike categorical variables.

Types of machine learning tasks

Machine learning tasks can be divided into the following three typical categories.However, these three do not cover all the tasks handled by machine learning, and some tasks belong to multiple categories and some tasks are ambiguous as to which category they belong to.

Supervised learning
Inputs and corresponding outputs[Note 2] Generate a function that maps.For exampleSortThe problem is given an example shown in the classification corresponding to the input vector and the output, and the function that maps them is approximated.
Unsupervised learning
Build a model from input only (unlabeled example).Data MiningSee also
Reinforcement learning
Learn how to act by observing the surrounding environment. Actions always affect the environment, and feedback from the environment in the form of rewards is used as a guide for learning algorithms. For exampleQ learningThere is.

Supervised learning

Overview

Supervised learning(supervised learning), Unknown probability distributionTarget.In some sense in practical applicationxTheinput,yTheoutputIn many cases, for exampley ThexUnknown functionFValueF(x)There is a small noise on it.The algorithm isFollowxyPair ofIs given as training data.The task that the algorithm should solve does not belong to (maybe) training dataxOn the other hand, the conditional probability distributionOr a value determined from it (for exampleIs to approximate the expected value of[9]..The accuracy of the approximation is predeterminedLoss functionEvaluate using the function.Therefore, it can be said that the goal of supervised machine learning is to reduce the expected value of the loss function.

I mentioned earlierDefinition of machine learningAccording to, supervised machine learning can be said to be the following machine learning:

task経 験Performance
Or approximate the value determined from it wellTraining dataExpected value of loss function

Prior knowledge in supervised learningFrom the unknownxCorresponding toyDistributionIs required to guess.Therefore, the algorithm is unknownxからThe operation to find (or the value determined from it)GeneralizationOrinference(inference).Depending on the task, it may be called "prediction", "judgment", "recognition", etc.

Algorithm is unknown dataxからxCorresponding toyIt is necessary to infer information on the distribution of, but the training data given as prior knowledge for this inferencexiMust be inferred fromyiIs attached as the "answer". The name "supervised learning" is thus a known "problem"xi"Answer" toyiThe algorithm that is a "student" is unknown in the setting that the "teacher" teachesx"Answer" corresponding toyIt is named after inferring.For the same reason, in supervised learning, training data is used.Teacher dataAlso called.

Training phase and generalization phase

In many supervised machine learning models, before the actual generalizationTrainingOrLearningA work called "training algorithm" and "generalization algorithm" can be regarded as a pair of machine learning models.The training algorithm takes the training data as input andThe parameterValue calledθIs output.The parameter is intuitively the "learning result" obtained by extracting useful information from the training data, and is this "learning result" in the case of generalization.θGeneralize using.In other words, the generalization algorithm is inputxBesides parametersθAlso it receives as input,Find (or a value determined from it).

Variable name

Variables in supervised machine learningxTheExplanatory variable(explanation variable),yTheObjective variable,Target variable(target variable) Ortarget(target)[7]..These are often referred to by different names,xThePredictive variables(predictor),yTheResponse variable(response variable)[8],xTheIndependent variable(Independent variable),yTheDependent variable(dependent variable) May be called[8]..Also, depending on the task, it may be called by a name other than these.

Regression and classification

Regression and classification are typical tasks that belong to supervised learning.Objective variable in supervised learningyWhen is a quantitative variableRegression(regression), If it is a categorical variable that takes a value in a finite setSort(classification) OrDiscriminationCall[8][10].

Regression

Regression goal is inputxWhen givenExpect information about.Typically

likeyIs an unknown functionFStatueF(x)Random noiseεInput in the case of data withxからyAs accurate as possible forecastIs required to be output.Objective variables handled in regressionyIs a continuous quantity, typically a numerical vector in which a plurality of real numbers are arranged.

Like other supervised machine learning algorithms, regression algorithmsA set of training data selected according toCan be received as, and input with these training data as hintsxCorresponding toyExpected value of

Is output.Forecast accuracy is a loss functionMeasured by.Loss function in regressionasSquare error loss

Is often used.

The goal of regression isGeneralization error(Prediction error,Forecast lossBoth)

Is to keep it small.hereIs the output of the generalization algorithm,E[・]Represents the expected value.

Sort

In the classification task, a finite number of predetermined classes are defined, and each class has "cat", "dog", etc.Class label(Or simplylabel) Is assigned a class name.The purpose of the classification task is given inputxIt is to guess which one belongs to.

There are roughly two types of algorithms for solving classification tasks: a "deterministic approach" and a "stochastic approach".[11], The former is input in the classification taskxWhen givenxIt outputs the class label to which it seems to belong, and is typically a loss function.0-1 loss

use[12].

The latter, on the other hand, does not output the class label directly,Confidence(confidence scoreIs to be output.here Thex jA measure of how confident you are in the second class,Meet

Training data for classification tasks that output confidence OfyiIs also encoded so that it is consistent with certainty.That is,xi jIf it belongs to the second classAnd.hereej ThejA vector in which the third component is 1 and the other components are 0 (thus a vector in which only one component is 1 and the others are 1).one-hot vectorTo express data by one-hot vectorone-hot expression[13] ).Typically as a loss functionCross entropy

use[12].

Relationship between regression and classification

A typical method for designing an algorithm for a classification task using conviction is to use the algorithm for a regression task.That is, training data in which the class is encoded by a one-hot vector.It is a method of training the algorithm of the regression task using and using the algorithm of the training result for the classification task.However, regression task outputIs different from the conviction, which is the output of the classification task,The problem that the condition is not satisfied arises.So once(English edition

This problem is solved by applying.

On the contrary, the classification task using the certainty can be diverted to the regression task, and in this case, it is necessary to apply the inverse conversion of the softmax conversion for the same reason as above.

Bias and variance trade-off

In regression, inputxCorresponding toyPredicted value ofIs required to output TheyIt is desirable that it is close to the expected value ofIt is desirable that the variation of is small.However, as shown below, these two requirements are in a trade-off relationship.[14] :

theorem (Bias and variance trade-off) - p(x,y)TheWith the above probability distribution,DTheAs a set of training data selected according to some probability distribution above[Note 3],As a regression algorithmDThe function obtained by training this regression algorithm byAnd the error function is the squared error

Defined byTheDChoose independently of

And

At this time, the training data set of the prediction errorDExpected value forExpected prediction error[15]

Meets:

here,

The case of regression was described above, but the same applies to the classification that outputs the certainty.

Bayesian rules

L,p(x,y)Are the loss function and data distribution for supervised learning tasks such as regression and classification, respectively.FForecast lossIt is written as.At this time, the lower limit of the predicted loss

The loss functionLUnderBayesian error(Bayes error) To achieve the lower limitFTheBayesian rules(Bayes rule)[16].. here TheMeasurable functionIn the whole setLower limit.

Bayesian rule is the best predictive function in theory, but in reality it is a probability distributionp(x,y)Is unknownp(x,y)Forecast loss forCannot be calculated and Bayesian rules cannot be obtained.Therefore, known data in supervised learningIt is necessary to search for an algorithm that outputs a value as close to the Bayesian rule as possible.

Regression

When the square loss is selected as the loss function, the following theorem holds.[17] :

theorem (Bayes' rule of regression on square loss) - p(x,y)TheWith the above probability distribution,

And.At this time, the generalization errorTo minimizeIt is,

Is. hereE Thep(x,y)Conditional probability distribution determined byRandomly fromyThis is the expected value when you select.

functionTheRegression functionSometimes called[17].

Sort

In a classification task (of the type that outputs the class directly rather than the confidence), the Bayesian rule for 0-1 loss is as follows:

Unsupervised learning

Unsupervised learning(unsupervised learning), Unlike supervised learning, the objective variableyIt is not possible to know if there is an equivalent to in the first place.

Unknown probability distribution in unsupervised machine learningVariables that followIs given to the algorithm as training data.The task that the algorithm should solve is the probability distributionAnd somehow learned its important properties,Is to directly estimate the characteristics of[9][18]..A clear "correct answer" unlike supervised learningyThere is no evaluation scale that directly evaluates the validity of the output in unsupervised learning because there is no[18], The judgment of validity becomes subjective[18], Heuristic discussion required[18].

One of the interests of unsupervised learning is the probability density functionEstimate itselfDensity estimationIs the task ofKernel density estimationVarious nonparametric density estimation methods are known in statistics.[18].. HoweverxIf the dimension ofCurse of dimensionalityThis presumption does not work because of[18]Therefore, in many unsupervised learning,With some parametric model ofAttempts to approximate or from training dataAn approach is taken, such as extracting some important property of.

Specific examples are as follows.

Reinforcement learning

Reinforcement learning(Kyogakushu,British: reinforcement learning) Means in an environmentAgentHowever, it is a type of machine learning that deals with the problem of observing the current state and deciding the action to be taken.Agents get rewards from the environment by choosing actions.Reinforcement learning is a measure that gives the most rewards through a series of actions (Policy) To learn.The environment isMarkov decision processIt is formulated as.As a typical methodTD learning,Q learningIt has been known.

  • Reinforcement learning is a method of learning "behavior that maximizes value" through trial and error.
  • Learning is possible even if the correct answer is not known in advance (= teacher data does not exist)
  • There are many application examples in battle games and robots
  • Reinforcement learning using deep learning is called deep reinforcement learning.
  • The name reinforcement learning comes from operant learning, which is a learning mechanism of the brain advocated by Dr. Skinner.
  • Dr. SkinnerSkinner boxThrough a rat experiment called "A reward for a specific movement, that movement is strengthened" was discovered, and this was called operant learning (around 1940).

Other machine learning

For example:

(English edition
It allows you to handle both labeled and unlabeled examples, thereby generating approximate functions or classifiers.
(English edition(Transductive reasoning)
Attempts to predict new output of concrete and fixed (test) cases from the observed concrete (training) cases.
(English edition
Learn about multiple related problems at the same time to improve the prediction accuracy of major problems.

Active learningThe algorithm accesses the desired output (training label) for a limited set of inputs on a budget and optimizes the selection of inputs to obtain the training label. When used interactively, they can be presented to human users for labeling. Reinforcement learning algorithms are fed back in the form of positive or negative reinforcement in a dynamic environment and are used to learn to play games with self-driving cars and human opponents.[19].. Other specialized algorithms in machine learning include computer programsNatural languageThere is topic modeling that gives a set of documents and finds other documents that cover similar topics. Machine learning algorithms are unobservable in density estimation problemsProbability density functionCan be used to determine. Meta-learning algorithms learn their own inductive bias based on past experience. In developmental robotics, robotic learning algorithms generate their own sequences of learning experiences, also known as curriculum, and accumulate new skills through self-guided exploration and social interaction with humans. These robots use guidance mechanisms such as active learning, maturity, motor synergies, and imitation.

Interaction with humans

Some machine learning systems are humanIntuitionIt is trying to eliminate the need for data analysis by humans, but some have incorporated the cooperative interaction between humans and machines. However, the data representation method of the system and the mechanism for exploring the characteristics of the data are designed by human beings, and human intuition cannot be completely excluded.

Relationship with data mining

With machine learningData MiningIs often confused because it has a large intersection and the same technique, but it can be defined as follows.

  • The purpose of machine learning is to make predictions based on "known" features learned from training data.
  • The purpose of data mining is to characterize data that was previously "unknown."発 見It is to be.

The two overlap in many ways. Data mining uses machine learning techniques, but their purpose is often slightly different. Machine learning, on the other hand, also uses data mining techniques as "unsupervised learning" or as a pre-process to improve learner accuracy. The two research areas areECML PKDD With the exception of, basically, academic societies and academic journals are separate. The biggest cause of confusion between them comes from their basic premise. Machine learning evaluates performance based on the ability to regenerate known knowledge, while data mining emphasizes discovering previously "unknown" knowledge. Therefore, "supervised technique" can easily show superior results than "unsupervised technique" when evaluated by known knowledge. However, in typical data mining, training data cannot be prepared, so "supervised technique" cannot be adopted.

theory

An analysis of machine learning algorithms and their performanceTheoretical computer scienceIs a field(English editionIt is called. Learning theories generally cannot guarantee the performance of algorithms because the training examples are finite, while the future is uncertain. Instead, it gives a stochastic range of performance. (English editionby(English editionThere is also an expression called statistical learning theory.[20]

In addition to that, of learningTime complexityI am also studying the feasibility. In computational learning theory,Polynomial timeCalculations ending with are considered feasible.

With machine learningstatisticsAre similar in many respects, but use different terms.

Statistical machine learning

Statistical machine learning is the data of machine learning.Probabilistic generation ruleWhat to learn[21] Refers to.

statistics ThepopulationAnd the specimen, which exists thereProbability distributionIt is a methodology focusing on. In statistical machine learning, we think that data can be obtained stochastically from the population, model the data generation process using a probability distribution, and train the model (or learn the model selection itself) based on the actual data. .. The model of statistical machine learning is also called a generative model / statistical model because it can be interpreted that the data is obtained from the population and the data is generated by sampling from the population.[22].

Specimen-based population (parameter) estimation and selection has long been studied in statistics and there are many theories. Since learning in statistical machine learning is exactly population estimation / selection, the theory of statistics can be applied to machine learning. Various machine learning issues such as learning convergence and generalization performance are being studied using the knowledge system of statistics.

An example of statistical machine learning isneural networkGenerative model in, eg, autoregressive generative net,Variational autoencoder(VAE),Adversarial Generation Network(GAN) and the like. Since data such as images and sounds can be generated by actually sampling from these models (= population), it was studied very well in the latter half of the 2010s, especially in the field of neural networks, and has achieved great results (WaveNet, VQ- VAE-2, BigGAN, etc.).

Mathematical optimization

Many machine learning methods define the error of the model output for the data and update (learn) the parameters so as to minimize the error. The function that calculates the error, that is, the academic system that minimizes the loss function, is used in applied mathematics.Mathematical optimization(The problem to be solved isOptimization problem) Called.

For example,neural networkLet's differentiate the loss functionGradient method(Stochastic gradient descentEtc.), learning is often done. Whether or not the optimization by the gradient method converges to the optimum solution is studied by the theory of mathematical optimization. Also, the constraints imposed on the neural network differ depending on the optimization method used, and all consecutive function applications are differentiable to use the gradient method ()Back propagationIs required (which strongly constrains the sampling of the generative model).

Technique

Decision treeLearning
Decision treeThe(English editionIt is a learning used as, and maps observations about an item with conclusions about the target value of that item. As a concrete exampleID3,Random forestThere is.
(English edition
A technique for discovering interesting relationships between variables in large databases.
neural network (NN)
Also known as an artificial neural network (ANN),NerveIt is a learning algorithm born from the viewpoint of imitating the structure and function of the network.Artificial nerveStructure the calculation with interconnectedConnectionismProcess information with computational techniques. Modern neural networksnon-linearIstatisticsOfData modelingIt is a tool. Used to model complex relationships between inputs and outputs, of dataPattern recognitionAnd the unknown between the observed variablesJoint distributionThere are uses such as capturing the statistical structure in.
Genetic programming (GP)
Of living things進化ImitatedEvolutionary algorithmIs a technique based on, performing user-defined tasksProgramTo explore.Genetic algorithmIs an extension and specialization of. By the ability to perform a given taskFitness terrainIt is a machine learning technique that determines and thereby optimizes computer programs.
(English edition (ILP)
Use examples, background knowledge, and hypotheses as uniform expressionsLogic programmingIs a technique for regularizing learning using. Encode a set of known background knowledge and examples into a logical database of facts, with all positive examplesIncluding, Generate a hypothetical logic program that does not contain any negative examples.
Support vector machine (SVM)
Sort,RegressionA series used forSupervised learningIt is a technique. The label of the training example isBinary classification(Classified into two), build a model with a training algorithm and predict which new example will be classified.
Clustering
Clustering distributes the observed examples to a subset called a cluster, and the distribution is performed according to a pre-instructed standard. The results of clustering differ depending on how a hypothesis (standard) is established for the structure of the data. Hypotheses are defined on a "similarity scale" and are evaluated by "internal compactness" (similarity between members within the same cluster) and distance between different clusters. There are also techniques based on "estimated density" and "graph connectivity". ClusteringUnsupervised learningIt ’s a technique,statisticsOften used in data analysis.
Bayesian network
Random variableFlock and those(English editionTheDirected acyclic graph Expressed in (DAG)Probabilistic graphical modelIs. For example, the relationship between illness and symptoms can be expressed stochastically. If you enter the symptoms in the network, you can output a list of possible diseases with probability. With thisinferenceThere is an efficient algorithm for learning.
(English edition
Unsupervised learningSome of the algorithms try to find a better representation of the input provided during training. As a classic examplePrincipal component analysis,Cluster analysisThere is. There are also algorithms that transform the input into a more convenient representation before classification or prediction, while retaining the information that the input has. At that time, the input can be reconstructed from the unknown probability distribution that the input data follows, but it is not necessary to faithfully reproduce the incredible example in the probability distribution. For example(English editionThe algorithm expresses the input dimension by converting it low under some restrictions.(English editionIn the algorithm, the same expression is converted under the constraint that the input is sparse (many zeros). Of neural networkDeep learningDiscovers multiple levels of representation or hierarchy of features, from low-level extracted features to high-level abstracted features. It is also argued that intelligent machines learn expressions that unravel the potential factors of deviations that explain the observed data.[23].
Extreme learning machine (ELM)
It is a feedforward neural network with one or more hidden layers, and can be applied to classification, regression, and clustering.

Application areas

Machine learning has the following application fields.

2006, online DVD rental companyNetflixOf the companyRecommender systemCompetitions looking for programs that are more than 10% more powerful (more accurately predicting user preferences) Netflix Prize Was held.The competition took several years and the AT & T Labs team called "Pragmatic Chaos."[24] Won the machine learning program in 2009 and won $ 100 million[25].

Actual application

There are:

SortConcrete example
recognition[26]Image recognitionFace recognition[27]
Monitoring work[27]
Inspection / inspection[27]
Organize images[27]
Medical diagnosis[27]
voice recognitionVoice input[28]
Automatic creation of minutes[28]
Call center assistance or alternative[28]
Sentence analysis / sentence recognitionIllegal sentence detection[29]
Understanding needs[29]
Search for similar cases in the past[29]
Anomaly detectionFailure detection[30]
Suspicious behavior detection[30]
DefaultDetection[30]
analysis[26](Many forecasts[31]Numerical forecastDemand forecast such as sales[32]
Forecast of stock prices and economic indicators[32]
Prediction of time required[32]
Prediction of deterioration[32]
Quality prediction[32]
Prediction of event occurrenceForecast of purchases and cancellations[33]
Failure prediction[33]
Disease prediction[33]
Prediction of compatibility[33]
Coping[26]Behavioral optimizationInventory optimization[34]
Advertising optimization[34]
Campaign optimization[34]
Optimizing store openings[34]
Delivery optimization[34]
Work optimizationself-driving[35]
Robot control[35]
Q & A automation[35]
Expression generation翻 訳[36]
要約[36]
Image generation[36]

software

Equipped with various machine learning algorithmsSoftware suiteAs,SAS-RapidMiner-LION solver-KNIME-Put-ODM-Shogun toolbox-Orange-Apache mahout-Scikit-learn-mlpy-MCMLL-OpenCV·· and so on.

Data Robot[37] There is a method to compare multiple methods by parallel calculation[38].

Academic journals and international conferences

footnote

[How to use footnotes]

注 釈

  1. ^ Machine learning and pattern recognition "can be viewed as two facets of the same field."[3]: vii
  2. ^ Because it is often provided by human experts by labeling the training exampleslabelAlso called.
  3. ^ Typicallyp(x,y)Independently according toDSelect each data ofDThe theorem can be proved regardless of the probability distribution selected from

Source

  1. ^ "Machine Learning textbook". www.cs.cmu.edu. 2020/5/28Browse.
  2. ^ (2008) “The Annotation Game: On Turing (1950) on Computing, Machinery, and Intelligence”, in Epstein, Robert; Peters, Grace, The Turing Test Sourcebook: Philosophical and Methodological Issues in the Quest for the Thinking Computer, Kluwer, pp. 23–66, ISBN 9781402067082, http://eprints.ecs.soton.ac.uk/12954/ 
  3. ^ # bishop2006
  4. ^ (1998). “Data Mining and Statistics: What's the connection?”. Computing Science and Statistics 29 (1): 3–9. 
  5. ^ Samuel, Arthur (1959). “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal of Research and Development 3 (3): 210–229. two:10.1147 / rd.33.0210. 
  6. ^ Mitchell, T. (1997). Machine Learning. McGraw Hill. Pp. 2. ISBN 978-0-07-042807-2 
  7. ^ a b #waterfall p.20.
  8. ^ a b c d e f #ESL p11-12
  9. ^ a b #GBC Verse 5.1.3
  10. ^ #Kanamori p.3.
  11. ^ #waterfall p.8.
  12. ^ a b #waterfall p.36.
  13. ^ #waterfall p.30.
  14. ^ "Lecture 12: Bias-Variance Tradeoff". CS4780 / CS5780: Machine Learning for Intelligent Systems [FALL 2018]. Cornell University. 2020/11/10Browse.
  15. ^ #Kanamori p.13.
  16. ^ #Kanamori p.9.
  17. ^ a b #ESL p22-23
  18. ^ a b c d e f #ESL p559-561
  19. ^ (2006) Pattern Recognition and Machine Learning, Springer, ISBN 978-0-387-31073-2 
  20. ^ Statistical Learning Theory, Takafumi Kanamori, Machine Learning Professional Series, Kodansha, 2015, ISBN 9784061529052
  21. ^ "Statistical Machine Learning Theory and Boltzmann Machine Learning" Muneki Yasuda. Yamagata University
  22. ^ Ueda. "Introduction to Statistical Machine Learning" NII. https://www.youtube.com/watch?v=wqb3k22toFY&t=478
  23. ^ Yoshua Bengio (2009). Learning Deep Architectures for AI. Now Publishers Inc .. p. 1–3. ISBN 978-1-60198-294-0. http://books.google.com/books?id=cq5ewg7FniMC&pg=PA3 
  24. ^ British: Pragmatic Chaos
  25. ^ "BelKor Home Page" research.att.com
  26. ^ a b c # Motohashi 2018 Near the beginning of Chapter 1.3 "Usage of Artificial Intelligence" and "Three Roles of Artificial Intelligence".
  27. ^ a b c d e # Motohashi 2018 Chapter 1.4 "Specific Examples of Recognition" Figure 1-4 "Specific Examples of Image Recognition"
  28. ^ a b c # Motohashi 2018 Chapter 1.4 "Specific Examples of Recognition" Figure 1-5 "Specific Examples of Voice Input"
  29. ^ a b c # Motohashi 2018 Chapter 1.4 "Specific Examples of Recognition" Figure 1-6 "Specific Examples of Sentence Analysis / Sentence Recognition"
  30. ^ a b c # Motohashi 2018 Chapter 1.4 “Specific Examples of Recognition” Figure 1-7 “Specific Examples of Anomaly Detection”
  31. ^ # Motohashi 2018 Chapter 1.5 "What is Analysis?"
  32. ^ a b c d e # Motohashi 2018 Chapter 1.5 "Specific Examples of Analysis" Figure 1-8 "Specific Examples of Numerical Prediction"
  33. ^ a b c d # Motohashi 2018 Chapter 1.5 "Specific Examples of Analysis" Figure 1-9 "Specific Examples of Prediction of Event Occurrence"
  34. ^ a b c d e # Motohashi 2018 Chapter 1.6 “Specific Examples of Coping” Figure 1-10 “Specific Examples of Behavior Optimization”
  35. ^ a b c # Motohashi 2018 Chapter 1.6 "Specific Examples of Countermeasures" Figure 1-12 "Specific Examples of Specific Work"
  36. ^ a b c # Motohashi 2018 Chapter 1.6 “Specific Examples of Countermeasures” Figure 1-13 “Specific Examples of Expression Generation”
  37. ^ British: DataRobot
  38. ^ DataRobot: https://www.datarobot.com

References

  • Christopher M. Bishop (2006). Pattern Recognition And Machine Learning.Springer-Verlag. ISBN 978-0387310732  (Intermediate and advanced textbooks) →Support page(From here, Chapter 8 "Graphical Models" is available in pdf format)
  • Motohashi, Yosuke (2018/2/15). This book that understands artificial intelligence system projects From planning / development to operation / maintenance (AI & TECHNOLOGY)Shoeisha. ASIN B078JMLVR2. ISBN 978-4798154053 
  • Ian Goodfellow, Yoshua Bengio, Aaron Courville Translation: Hiroo Kurotaki, Shin Kono, Masashi Misono, Jun Hozumi, Naoki Nonaka, Shoji Tomiyama, Takahiro Tsunoda, Supervision: Yusuke Iwasawa, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo / 2018/8). Deep learning (kindle version).Dwango. ASIN B07GQV1X76 
  • Author: Trevor Hastie, Robert Tibshirani, Jerome Friedman, Translation: Masaru Sugiyama, Tsuyoshi Ide, Toshihiro Kamishima, Takio Kurita, Eisaku Maeda, Yoshihisa Ijiri, Toshiharu Iwata, Takafumi Kanamori, Atsushi Kanemura, Masayuki Karasuyama, Yoshinobu Kawahara, Shogo Kimura, Yoshinori Konishi, Tomoya Sakai, Daiji Suzuki, Ichiro Takeuchi, Toru Tamaki, Daisuke Deguchi, Ryota Tomioka, Hitoshi Habe, Shinichi Maeda, Daichi Mochihashi, Makoto Yamada (2014/6/25). Basics of Statistical Learning-Data Mining, Inference, PredictionKyoritsu Shuppan. ISBN 978-4320123625 
  • Masato Taki (2017/10/21). This is an introduction to deep learning.KS Information Science Specialized Book Machine Learning Startup Series. Kodansha. ISBN 978-4061538283 
  • Takafumi Kanamori (2015/8/8). Statistical learning theory.KS Information Science Specialized Book Machine Learning Startup Series. Kodansha. ISBN 978-4061529052 
  • Yasuaki Ariga, Shinta Nakayama, Takashi Nishibayashi, "Machine Learning Beginning at Work", January 2018, 1.ISBN 978-4-87311-825-3.

Further reading

Related item

外部 リンク


 

Back to Top
Close