ポータルフィールドニュース

ポータルフィールドニュース

in ,

🥾|【レビュー】モンベルのアルパインクルーザー2000をバイクツーリング&登山で使ったら最高だった件


写真 

【レビュー】モンベルのアルパインクルーザー2000をバイクツーリング&登山で使ったら最高だった件

 
内容をざっくり書くと
雨の日も走ることがあるので防水性は絶対に必要条件です!
 

MotoMeganeをご覧の皆さまこんにちは。kanaeです。愛車のX-ADVでツーリングにプラスし… →このまま続きを読む

 Moto Megane(モトメガネ)

Moto Megane(モトメガネ)は、ライダーの役に立つバイクギア、オートバイ用品、二輪部品(パーツ)、キャンプツーリングに役立つアウトドア用品を厳選して紹介するウェブマガジンです。


Wikipedia関連ワード

説明がないものはWikipediaに該当項目がありません。

同値

同値(どうち)または等価(とうか)とは、2つの命題が共にまたは共にのときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、=、EQ などが使われる。

真理値表

命題 P命題 QPQ

性質

基本的な性質

同値の基本的な性質は以下の通り。
論理包含(ならば)、論理積(かつ))

  • 反射律:
  • 対称律:
  • 推移律:

その他

他にも次のような性質がある。
否定排他的論理和

  • 反対称律:

必要十分条件

二つの条件 pq に対して、「 p を満たすものは全て q も満たす 」 というとき、「 pq である為の十分条件である 」 あるいは 「 qp である為の必要条件である 」 という。

また、「 pq である為の十分条件であり、qp である為の十分条件である 」 というとき、「 pq である為の必要十分条件である 」 あるいは 「 pq とは同値である 」 という。

例 1

ある数が4の倍数である為には、少なくとも偶数でなければならない。つまり、偶数であることは、4の倍数である為の必要条件である。ただし、偶数であっても、必ずしも4の倍数であるとは限らない。

他方、ある数が2の倍数である為には、少なくとも偶数でなければならない。つまり、偶数であることは、2の倍数である為の必要条件である。また、その数が偶数であれば、その数は必ず2の倍数である。つまり、偶数であることは2の倍数である為の十分条件である。すなわち、偶数であることは、2の倍数である為の必要十分条件であり、両者は同値である。

例 2

自然数変数 n についての条件 p(n), q(n) を次のように定める。

  • p(n): n > 10
  • q(n): 2n > 20

そのとき、p(n) は q(n) である為の必要十分条件である。すなわち、n > 10 は 2n > 20 である為の必要十分条件である。

例 3

実数変数 x についての条件 p(x), q(x) を次のように定める。

  • p(x): x > 0
  • q(x): x2 > 0

そのとき、p(x) は q(x) である為の十分条件である。しかし、−1 は q(x) を満たすが (x) を満たさないので、 「q(x) を満たす実数は全て p(x) を満たす」 とはいえない。よって、q(x) は p(x) である為の十分条件ではない。従って、p(x) は q(x) である為の必要十分条件ではない。

例 4

¬、⇔ を論理演算とし、命題変数 AB についての条件 p(A, B), q(A, B) を次のように定める。 ( ¬ は集合 { 真、偽 } から集合 { 真、偽 } への 1 つの写像である。⇔ は { 真、偽 }×{ 真、偽 } から { 真、偽 } への 1 つの写像である。AB は { 真、偽 } の元の変数である。)

  • p(A, B): ¬( AB ) = 真
  • q(A, B): ( ¬A )⇔B = 真

そのとき、p(A, B) は q(A, B) である為の必要十分条件である。すなわち、「¬( AB ) = 真」 は 「( ¬A )⇔B = 真」 である為の必要十分条件である。

関連項目

脚注

外部リンク


 

Back to Top
Close