ポータルフィールドニュース

ポータルフィールドニュース

in ,

⚾|【高校野球春季東京大会3回戦】まもなく開始!明大中野八王子vs日野


写真 野球 試合サマリー

【高校野球春季東京大会3回戦】まもなく開始!明大中野八王子vs日野

 
内容をざっくり書くと
この後4/10 12:30より、高校野球春季東京大会 明治大学付属中野八王子高等学校(男子) vs 東京都立日野高等学校(男子)の試合がダイワハウススタジアム八王子にて行われます。
 

この後4/10 12:30より、高校野球春季東京大会 明治大学付属中野八王子高等学校(男子) vs … →このまま続きを読む

 Player!

スポーツエンターテイメントアプリ「Player!(プレイヤー)」。サッカー、野球から競馬、陸上まで幅広いスポーツの最新ニュースや速報、日程、結果などをどこよりも早くお届けします。


Wikipedia関連ワード

説明がないものはWikipediaに該当項目がありません。

高校野球春季東京大会明治大学付属中野八王子

1000

1000一〇〇〇、せん、ち)は、自然数または整数において、999の次で1001の前の数である。略称として1kと表記される。

性質

その他 1000 に関すること

1001 から 1999 までの数

1001 から 1100 までの数


1101 から 1200 までの数


1201 から 1300 までの数


  • 1201 - スーパー素数、中心つき四角数、エマープ(1201 ←→ 1021)、七進数や四十九進数、そして2401進数における英語版
  • 1202 = 192 + 202 + 212
  • 1210 = 113 − 112 、2つの友愛数 (1184, 1210) の後者
  • 1215 = 35 × 5 = 64 − 34 = 65 − 38
  • 1216 = 26 × 19、九角数
  • 1217 - スーパー素数。
  • 1218 - 四素合成数
  • 1221 = 3 × 11 × 37 = 33 × 37 = 11 × 111回文数六進法では 5353(6) で上二桁と下二桁の列が同じになる。
  • 1223 - ソフィー・ジェルマン素数
  • 1224 = 33 + 53 + 73 + 93 、4連続奇数立方和で表せる数、1つ前は完全数496
  • 1225 = 352 、三角数、3番目の平方三角数、六角数、中心つき八角数
  • 1229, - 1231と組で42番目の双子素数、ソフィー・ジェルマン素数、エマープ(1229 ←→ 9221)、π(10000) = 1229 (ただしπ(x)は素数計数関数)
  • 1231 - エマープ(1231 ←→ 1321)
  • 1233 = 122 + 332
  • 1234 - レスリー・ファイストの楽曲
  • 1236 - 双子素数の和(617 + 619)
  • 1240 - 四角錐数
  • 1241 - 中心つき立方体数
  • 1242 - 十角数
  • 1247 - 五角数
  • 1250 = 2 × 54 。素因数が 2i × 5j になる数である。1つ前は1000、次は1280
  • 1255 = 251 × 5フリードマン数
  • 1256 = 3.14 × 4 × 100
  • 1259 - の近似値
  • 1260 = 22 × 32 × 5 × 7 = 35 × 36高度合成数矩形数、最小のヴァンパイア数、フリードマン数(21 × 60)、1から10までの数のうち8だけ割り切れない。
  • 1261 = 350 + 351 + 352 、六芒星数
  • 1264 - 最初の27個の素数の合計
  • 1266 - 中心つき五角数
  • 1267 = 7 × 181
  • 1275 - 三角数
  • 1277 - 1279と組で43番目の双子素数
  • 1280 = 28 × 5 。素因数が 2i × 5j になる数である。1つ前は1250、次は1600
  • 1283 - 安全素数、エマープ (1283 ←→ 3821)
  • 1284 - 双子素数の和(641 + 643)
  • 1285 - ノノミノの数、4番目のナイスフリードマン数((1 + 28) × 5)
  • 1288 - 七角数
  • 1289 - 1291と組で44番目の双子素数、ソフィー・ジェルマン素数
  • 1295 = 5 × 7 × 37 = 35 × 37 。六進法では 5555 となりゾロ目。1つ前の4444(6)は1036(10)、次の11111(6)は1555(10)
  • 1296 = 64 = 362 = 24 × 34 = 16 × 81二重平方数。最初の8個の立方数の和、8×8 のチェス盤における長方形の総数。6n の1つ前は216、次は7776。素因数が 2i × 3j になる数である。1つ前は1152、次は1458
  • 1297 - スーパー素数
  • 1300 = 22 × 52 × 13 = 4 × 25 × 13

1301 から 1400 までの数


  • 1301 - 1303と組で45番目の双子素数、中心つき四角数、エマープ(1301 ←→ 1031)
  • 1306 = 11 + 32 + 03 + 64[4]
  • 1307 - 安全素数
  • 1320 - 双子素数の和(659 + 661)
  • 1319 - 1321と組で46番目の双子素数、安全素数
  • 1321 - エマープ(1321 ←→ 1231)
  • 1325 = 202 + 212 + 222マルコフ数
  • 1326 - 三角数、六角数
  • 1327 - 素数のギャップが30を超える最小の素数(1361 - 1327 = 34)
  • 1330 - 三角錐数、ルース=アーロン・ペア (1330, 1331) の前者
  • 1331 = 113、中心つき七角数、ルース=アーロン・ペア (1330, 1331) の後者、回文立方数(∀N>3のN進法によって1331を表記しても、1331は必ず回文立方数になる。これはであるため)
  • 1332 - 矩形数
  • 1333 = 360 + 361 + 362、最小の18-ハイパー完全数
  • 1335 - 五角数、「待ち望んで千三百三十五日に至る者は、まことに幸いである。」(ダニエル書 12章 12節)
  • 1337 - leet を意味する
  • 1343 = 113 + 11 + 1
  • 1344 - 連続してある数に対して約数の和を求めていった場合42個の数が1344になる。1344より小さい数で42個ある数はない。いいかえると を満たす n が42個あるということである。(ただし σ は約数関数)[5]
  • 1350 - 九角数
  • 1361 - 素数のギャップが30を超える最小の素数の組(1361 − 1327 = 34)の中の大きい方
  • 1364 - リュカ数
  • 1365 - 五胞体数
  • 1367 - 安全素数
  • 1369 = 372 、中心つき八角数
  • 1371 - 最初の28個の素数の合計
  • 1378 - 三角数
  • 1379 - 14 × 14 の魔方陣の一列の和
  • 1381 - 中心つき五角数、エマープ(1381 ←→ 1831)
  • 1387 - 英語版、十角数
  • 1395 - ヴァンパイア数(15×93)
  • 1399 - エマープ(1399 ←→ 9931)

1401 から 1500 までの数


  • 1404 - 七角数
  • 1405 = 262 + 272 = 72 + 82 + ... + 162、26番目の中心つき四角数
  • 1406 - 矩形数
  • 1407 = 370 + 371 + 372 、この形で表すことのできる3番目の楔数である。一つ前は651、次は2163。
  • 1408 - スティーヴン・キングの短編小説
  • 1409 - ソフィー・ジェルマン素数、スーパー素数
  • 1412 - テレビアニメまじっく快斗1412
  • 1419 - ツァイゼル数
  • 1426 - 五角数
  • 1427 - 1429と組で47番目の双子素数
  • 1430 - カタラン数
  • 1431 - 53番目の三角数、六角数
  • 1433 - スーパー素数
  • 1435 - ヴァンパイア数(35×41)
  • 1439 - ソフィー・ジェルマン素数かつ安全素数(9番目)、の数字列からできる最小の素数。(オンライン整数列大辞典の数列 A174277)
  • 1440 - 4(4×360)、高度トーティエント数
  • 1441 - 六芒星数
  • 1444 = 382ローマ数字表記でパンデジタル数であるもののうち最小のもの[6]
  • 1447 - スーパー素数
  • 1451 - 1453と組で48番目の双子素数、ソフィー・ジェルマン素数
  • 1454 = 212 + 222 + 232
  • 1458 = 21 × 36 = 2 × 729
  • 1460 = 4 × 365 と表せるため閏年を含まないときの4年間の日数
  • 1461 - 閏年を含めたときの4年間の日数
  • 1463 = 111 + 112 + 113
  • 1464 = 110 + 111 + 112 + 113
  • 1469 - 八面体数
  • 1470 - 五角錐数
  • 1471 - スーパー素数、中心つき七角数、エマープ(1471 ←→ 1741)、十進法において、スーパー素数同士のエマープとしては最小。
  • 1480 - 最初の29個の素数の合計
  • 1481 - 1483, 1487, 1489と組で6番目の四つ子素数、1483と組で49番目の双子素数、ソフィー・ジェルマン素数
  • 1482 - 矩形数
  • 1483 = 380 + 381 + 382
  • 1485 - 三角数
  • 1487 - 安全素数、1489と組で50番目の双子素数である。
  • 1490 - テトラナッチ数
  • 1491 - 九角数
  • 1496 - 四角錐数
  • 1499 - ソフィー・ジェルマン素数、スーパー素数

1501 から 1600 までの数


  • 1501 - 中心つき五角数
  • 1511 - ソフィー・ジェルマン素数、エマープ(1511 ←→ 1151)
  • 1512 = 23 × 33 × 71 = 63 × 71 。連続してある数に対して約数の和を求めていった場合、53個の数が1512になる。1512より小さい数で53個ある数はない。いいかえると を満たす n が53個あるということである。(ただし σ は約数関数)
  • 1513 - 中心つき四角数
  • 1520 - 五角数、ルース=アーロン・ペア (1520, 1521) の前者
  • 1521 = 392、中心つき八角数、ルース=アーロン・ペア (1520, 1521) の後者
  • 1523 - 安全素数、スーパー素数
  • 1525 - 七角数
  • 1530 - ヴァンパイア数(30×51)
  • 1536 = 29 × 3 = 512 × 3 。八進法では 3000(8) になる。
  • 1537 - キース数
  • 1540 - 三角数、六角数、十角数、三角錐数
  • 1555 = 60 + 61 + 62 + 63 + 64六進法では11111(6)となり回文数
  • 1556 - 最初の9個の素数の平方の合計
  • 1559 - ソフィー・ジェルマン素数
  • 1560 = 39 × 40矩形数
  • 1561 = 390 + 391 + 392
  • 1564 = 22 × 17 × 23
  • 1568 = 28 × σ(28)
  • 1572 = 123 − 122 − 12
  • 1575 - 奇数の過剰数
  • 1583 - ソフィー・ジェルマン素数
  • 1584 = 123 − 122 = 11 × 122
  • 1585 - の近似値
  • 1589 = 222 + 232 + 242
  • 1593 - 最初の30個の素数の合計
  • 1596 - 三角数
  • 1597 - スーパー素数、フィボナッチ数マルコフ数
  • 1600 = 402 = 26 × 52 = 64 × 25ホワイトハウスの番地(ワシントンDCペンシルベニア通り1600番地)、SATの満点の点数

1601 から 1700 までの数


  • 1601 - ソフィー・ジェルマン素数、マーク・トウェインの小説『』、エマープ(1601 ←→ 1061)
  • 1602 - ハーシャッド数
  • 1607 - 1609と組で51番目の双子素数
  • 1617 - 五角数
  • 1618 - 中心つき七角数
  • 1620 - 、ハーシャッド数、双子素数の和(809 + 811)
  • 1619 - 1621と組で52番目の双子素数、安全素数
  • 1621 - スーパー素数
  • 1625 - 中心つき四角数
  • 1626 - 中心つき五角数
  • 1633 - 六芒星数
  • 1634 = 14 + 64 + 34 + 44
  • 1638 - 調和数
  • 1639 - 九角数
  • 1640 - 矩形数
  • 1641 = 400 + 401 + 402
  • 1644 - 双子素数の和(821 + 823
  • 1651 - 七角数
  • 1653 - 三角数、六角数
  • 1656 - 双子素数の和(827 + 829
  • 1667 - 1669と組で53番目の双子素数
  • 1669 - スーパー素数
  • 1676 = 11 + 62 + 73 + 64
  • 1679 = 23 × 73 、 23を基とする最小のハーシャッド数、天文学者カール・セーガンは1974年にアレシボ天文台から1679ビットの「E.T.への手紙」(アレシボ・メッセージ)を発信した。
  • 1680 - 高度合成数
  • 1681 = 412、中心つき八角数、n2 + n + 41 の形で最小の合成数素数生成式参照)
  • 1682 - ルース=アーロン・ペア (1682, 1683) の前者
  • 1683 - ルース=アーロン・ペア (1682, 1683) の後者
  • 1695 - 15 × 15 の魔方陣の一列の和
  • 1697 - 1699と組で54番目の双子素数

1701 から 1800 までの数


  • 1701 - 35×7、十角数、『スタートレック』に登場するU.S.S.エンタープライズの艦番
  • 1705 - トリボナッチ数
  • 1711 - 三角数
  • 1716 - 双子素数の和(857 + 859)
  • 1717 - 五角数
  • 1720 - 最初の31個の素数の合計
  • 1721 - 1723と組の55番目の双子素数
  • 1722 - 矩形数、ジューガ数
  • 1723 = 410 + 411 + 412 、 スーパー素数
  • 1728 = 123十二進法で1000 、1大グロス
  • 1729 - タクシー数、カーマイケル数、ツァイゼル数、中心つき立方体数
  • 1730 = 232 + 242 + 252
  • 1733 - ソフィー・ジェルマン素数
  • 1741 - スーパー素数、中心つき四角数、エマープ(1741 ←→ 1471)
  • 1756 - 中心つき五角数
  • 1760 - 1マイル=1760ヤード
  • 1764 = 422、双子素数の和(881 + 883)
  • 1770 - 三角数、六角数、オーストラリアに (1770) という名前の町がある
  • 1771 - 三角錐数
  • 1772 - 中心つき七角数
  • 1777 - 下3桁が「777」の素数としては最小
  • 1778 - の近似値
  • 1782 - 七角数
  • 1785 - 四角錐数
  • 1787 - 1789と組の56番目の双子素数、スーパー素数
  • 1794 - 九角数、四素合成数
  • 1800 - 5(5×360)、五角錐数、7以外の1から10までに加えて25(52)で割り切れる最小の数。

1801 から 1900 までの数


  • 1806 - 矩形数
  • 1807 = 420 + 421 + 422英語版の第5項
  • 1811 - ソフィー・ジェルマン素数
  • 1820 - 五角数、五胞体数
  • 1823 - 安全素数、スーパー素数
  • 1827 - 5番目のヴァンパイア数(21×87)
  • 1830 - 三角数
  • 1834 - 八面体数、最初の5個の素数の3乗の合計
  • 1836 - 陽子電子質量のおおよその比率
  • 1837 - 六芒星数
  • 1847 - スーパー素数
  • 1849 = 432、中心つき八角数
  • 1851 - 最初の32個の素数の合計
  • 1854 - モンモール数
  • 1861 - 中心つき四角数
  • 1862 - ルース=アーロン・ペア (1862, 1863) の前者
  • 1863 - ルース=アーロン・ペア (1862, 1863) の後者
  • 1865 - 六進法で 12345 となる。
  • 1867 - (p, p + 4, p + 6, p + 10, p + 12)が素数になる3番目の素数 p である。(オンライン整数列大辞典の数列 A022007)
  • 1870 - 十角数
  • 1871 - 1873, 1877, 1879と組で7番目の四つ子素数、1873と組で57番目の双子素数
  • 1877 - 1879と組で58番目の双子素数、1877 = 242 + 252 + 262
  • 1874 - オペラ『ドン・ジョヴァンニ』で、ドン・ジョヴァンニが関係を持った女性の数(従者レポレロの記録によれば)
  • 1884 = 121 + 122 + 123
  • 1885 = 120 + 121 + 122 + 123十二進法で1111、ツァイゼル数
  • 1889 - ソフィー・ジェルマン素数
  • 1891 - 三角数、六角数、中心つき五角数
  • 1892 - 矩形数
  • 1893 = 430 + 431 + 432
  • 1898 - 26を基とする最小のハーシャッド数

1901 から 1999 までの数


  • 1901 - ソフィー・ジェルマン素数、エマープ(1901 ←→ 1091)
  • 1907 - 安全素数
  • 1909 - 2番目の18-ハイパー完全数
  • 1913 - スーパー素数
  • 1914 - 四素合成数
  • 1918 - 七角数
  • 1920 = 27 × 3 × 5 = 64 × 30 、連続してある数に対して約数の和を求めていった場合56個の数が1920になる。1920より小さい数で56個ある数はない。いいかえると を満たす n が56個あるということである。(ただし σ は約数関数)
  • 1926 - 五角数
  • 1931 - 1933と組で59番目の双子素数、ソフィー・ジェルマン素数
  • 1933 - 中心つき七角数
  • 1936 = 442
  • 1938 - 四素合成数
  • 1943 - 三角数、六角数
  • 1944 = 23 × 35
  • 1949 - 1951と組で60番目の双子素数
  • 1953 - 三角数
  • 1956 - 九角数
  • 1960 = 23 × 5 × 72
  • 1973 - ソフィー・ジェルマン素数
  • 1974 - 四素合成数
  • 1980 = 22 × 32 × 5 × 11 = 44 × 45矩形数
  • 1981 = 440 + 441 + 442
  • 1984 - 26 × 31二進法で 11111000000 となる。
  • 1985 - 中心つき四角数
  • 1987 - 300番目の素数
  • 1988 - 最初の33個の素数の合計
  • 1989 = 32 × 13 × 17
  • 1995 = 3 × 5 × 7 × 19 、103.30の近似値
  • 1997 - 1999と組で61番目の双子素数
  • 1998 - 27を基とする2番目のハーシャッド数
  • 1999 - 十進法で下三桁が999の素数としては最小であり、逆数の循環節の長さも999桁。六進法では13131(6)回文数

脚注

[脚注の使い方]
  1. ^ a b なお、∀N>3のN進法によって1331を表記しても、1331は必ず立方数になる。これはであるため。
  2. ^ “片手だけで数字を31まで数える方法”. GIGAZINE. (2008年5月12日). http://gigazine.net/news/20080512_count_to_31_on_one_hand/ 2015年9月27日閲覧。 
  3. ^ オンライン整数列大辞典の数列 A002804
  4. ^ オンライン整数列大辞典の数列 A032799
  5. ^ オンライン整数列大辞典の数列 A241954
  6. ^ A105417

関連項目

1001 から 1999 までの整数
10001001100210031004100510061007100810091010101110121013101410151016101710181019
10201021102210231024102510261027102810291030103110321033103410351036103710381039
10401041104210431044104510461047104810491050105110521053105410551056105710581059
10601061106210631064106510661067106810691070107110721073107410751076107710781079
10801081108210831084108510861087108810891090109110921093109410951096109710981099
11001101110211031104110511061107110811091110111111121113111411151116111711181119
11201121112211231124112511261127112811291130113111321133113411351136113711381139
11401141114211431144114511461147114811491150115111521153115411551156115711581159
11601161116211631164116511661167116811691170117111721173117411751176117711781179
11801181118211831184118511861187118811891190119111921193119411951196119711981199
12001201120212031204120512061207120812091210121112121213121412151216121712181219
12201221122212231224122512261227122812291230123112321233123412351236123712381239
12401241124212431244124512461247124812491250125112521253125412551256125712581259
12601261126212631264126512661267126812691270127112721273127412751276127712781279
12801281128212831284128512861287128812891290129112921293129412951296129712981299
13001301130213031304130513061307130813091310131113121313131413151316131713181319
13201321132213231324132513261327132813291330133113321333133413351336133713381339
13401341134213431344134513461347134813491350135113521353135413551356135713581359
13601361136213631364136513661367136813691370137113721373137413751376137713781379
13801381138213831384138513861387138813891390139113921393139413951396139713981399
14001401140214031404140514061407140814091410141114121413141414151416141714181419
14201421142214231424142514261427142814291430143114321433143414351436143714381439
14401441144214431444144514461447144814491450145114521453145414551456145714581459
14601461146214631464146514661467146814691470147114721473147414751476147714781479
14801481148214831484148514861487148814891490149114921493149414951496149714981499
15001501150215031504150515061507150815091510151115121513151415151516151715181519
15201521152215231524152515261527152815291530153115321533153415351536153715381539
15401541154215431544154515461547154815491550155115521553155415551556155715581559
15601561156215631564156515661567156815691570157115721573157415751576157715781579
15801581158215831584158515861587158815891590159115921593159415951596159715981599
16001601160216031604160516061607160816091610161116121613161416151616161716181619
16201621162216231624162516261627162816291630163116321633163416351636163716381639
16401641164216431644164516461647164816491650165116521653165416551656165716581659
16601661166216631664166516661667166816691670167116721673167416751676167716781679
16801681168216831684168516861687168816891690169116921693169416951696169716981699
17001701170217031704170517061707170817091710171117121713171417151716171717181719
17201721172217231724172517261727172817291730173117321733173417351736173717381739
17401741174217431744174517461747174817491750175117521753175417551756175717581759
17601761176217631764176517661767176817691770177117721773177417751776177717781779
17801781178217831784178517861787178817891790179117921793179417951796179717981799
18001801180218031804180518061807180818091810181118121813181418151816181718181819
18201821182218231824182518261827182818291830183118321833183418351836183718381839
18401841184218431844184518461847184818491850185118521853185418551856185718581859
18601861186218631864186518661867186818691870187118721873187418751876187718781879
18801881188218831884188518861887188818891890189118921893189418951896189718981899
19001901190219031904190519061907190819091910191119121913191419151916191719181919
19201921192219231924192519261927192819291930193119321933193419351936193719381939
19401941194219431944194519461947194819491950195119521953195419551956195719581959
19601961196219631964196519661967196819691970197119721973197419751976197719781979
19801981198219831984198519861987198819891990199119921993199419951996199719981999

 

Back to Top
Close